Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
World J Acupunct Moxibustion ; 2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2298703

ABSTRACT

Chronic fatigue syndrome is a neurological disorder characterized by extreme fatigue that lasts for a long time and doesn't alleviate with rest. The number of the cases has been increasing during the era of COVID-19 pandemic. Acupuncture may have some effect on chronic fatigue syndrome, but its mechanism remains unclear. This article was to summarize the specific manifestations of abnormal central mechanism in patients with chronic fatigue syndrome through laboratory tests and neuroimaging. It was found from the laboratory evaluation that there were changes in the structure of the frontal cortex, thalamus and other brain tissues; factors, including IFN-α and IL-10 in cerebrospinal fluid were found abnormal; results of oxidative and nitrosative stress and changes in neurobiochemical substances, e.g. hypothalamus hormone levels and neurotransmitter concentrations, were observed. With magnetic resonance imaging and positron emission tomography, it was shown that the partial brain of persons with chronic fatigue syndrome had morphological changes with diminished grey matter and white; changes in cerebral blood flow velocity caused by decreased perfusion and functional activity with abnormal connectivity in brain were detected. In addition, there was significant decrease in glucose metabolism accompanied with neuroinflammatory response; metabolic disorders of serotonergic, cholinergic, glutamatergic and γ-aminobutyric acid energy neurotransmitters were also discovered. The regulatory effect of acupuncture on the above central neurological abnormalities in chronic fatigue syndrome model animals was elaborated, and the direction for further research was analyzed in order to provide ideas for further research on the central mechanism of acupuncture treatment for chronic fatigue syndrome.

2.
World Journal of Acupuncture-Moxibustion ; 2023.
Article in English | EuropePMC | ID: covidwho-2268629

ABSTRACT

Chronic fatigue syndrome is a neurological disorder characterized by extreme fatigue that lasts for a long time and doesn't alleviate with rest. The number of the cases has been increasing during the era of COVID-19 pandemic. Acupuncture may have some effect on chronic fatigue syndrome, but its mechanism remains unclear. This article was to summarize the specific manifestations of abnormal central mechanism in patients with chronic fatigue syndrome through laboratory tests and neuroimaging. It was found from the laboratory evaluation that there were changes in the structure of the frontal cortex, thalamus and other brain tissues;factors, including IFN-α and IL-10 in cerebrospinal fluid were found abnormal;results of oxidative and nitrosative stress and changes in neurobiochemical substances, e.g. hypothalamus hormone levels and neurotransmitter concentrations, were observed. With magnetic resonance imaging and positron emission tomography, it was shown that the partial brain of persons with chronic fatigue syndrome had morphological changes with diminished grey matter and white;changes in cerebral blood flow velocity caused by decreased perfusion and functional activity with abnormal connectivity in brain were detected. In addition, there was significant decrease in glucose metabolism accompanied with neuroinflammatory response;metabolic disorders of serotonergic, cholinergic, glutamatergic and γ-aminobutyric acid energy neurotransmitters were also discovered. The regulatory effect of acupuncture on the above central neurological abnormalities in chronic fatigue syndrome model animals was elaborated, and the direction for further research was analyzed in order to provide ideas for further research on the central mechanism of acupuncture treatment for chronic fatigue syndrome.

3.
Transl Psychiatry ; 13(1): 12, 2023 01 19.
Article in English | MEDLINE | ID: covidwho-2185776

ABSTRACT

Serious concerns have been raised about the negative effects of the COVID-19 pandemic on population psychological well-being. However, limited data exist on the long-term effects of the pandemic on incident psychiatric morbidities among individuals with varying exposure to the pandemic. Leveraging prospective data from the community-based UK Biobank cohort, we included 308,400 participants free of diagnosis of anxiety or depression, as well as 213,757 participants free of anxiolytics or antidepressants prescriptions, to explore the trends in incident diagnoses and drug prescriptions for anxiety and depression from 16 March 2020 to 31 August 2021, compared to the pre-pandemic period (i.e., 1 January 2017 to 31 December 2019) and across populations with different exposure statuses (i.e., not tested for COVID-19, tested negative and tested positive). The age- and sex-standardized incidence ratios (SIRs) were calculated by month which indicated an increase in incident diagnoses of anxiety or depression among individuals who were tested for COVID-19 (tested negative: SIR 3.05 [95% confidence interval 2.88-3.22]; tested positive: 2.03 [1.76-2.34]), especially during the first six months of the pandemic (i.e., March-September 2020). Similar increases were also observed for incident prescriptions of anxiolytics or antidepressants (tested negative: 1.56 [1.47-1.67]; tested positive: 1.41 [1.22-1.62]). In contrast, individuals not tested for COVID-19 had consistently lower incidence rates of both diagnoses of anxiety or depression (0.70 [0.67-0.72]) and prescriptions of respective psychotropic medications (0.70 [0.68-0.72]) during the pandemic period. These data suggest a distinct rise in health care needs for anxiety and depression among individuals tested for COVID-19, regardless of the test result, in contrast to a reduction in health care consumption for these disorders among individuals not tested for and, presumably, not directly exposed to the disease.


Subject(s)
Anti-Anxiety Agents , COVID-19 , Humans , Follow-Up Studies , Pandemics , Anti-Anxiety Agents/therapeutic use , Biological Specimen Banks , Depression/diagnosis , Depression/drug therapy , Depression/epidemiology , Prospective Studies , COVID-19/epidemiology , Anxiety/diagnosis , Anxiety/drug therapy , Anxiety/epidemiology , Drug Prescriptions , United Kingdom/epidemiology
4.
Research (Wash D C) ; 2022: 9767643, 2022.
Article in English | MEDLINE | ID: covidwho-2072476

ABSTRACT

Sepsis is a life-threatening organ dysfunction characterized by severe systemic inflammatory response to infection. Effective treatment of bacterial sepsis remains a paramount clinical challenge, due to its astonishingly rapid progression and the prevalence of bacterial drug resistance. Here, we present a decoy nanozyme-enabled intervention strategy for multitarget blockade of proinflammatory cascades to treat multi-drug-resistant (MDR) bacterial sepsis. The decoy nanozymes (named MCeC@MΦ) consist mesoporous silica nanoparticle cores loaded with CeO2 nanocatalyst and Ce6 photosensitizer and biomimetic shells of macrophage membrane. By acting as macrophage decoys, MCeC@MΦ allow targeted photodynamic eradication of MDR bacteria and realize simultaneous endotoxin/proinflammatory cytokine neutralization. Meanwhile, MCeC@MΦ possess intriguing superoxide dismutase and catalase-like activities as well as hydroxyl radical antioxidant capacity and enable catalytic scavenging of multiple reactive oxygen species (ROS). These unique capabilities make MCeC@MΦ to collaboratively address the issues of bacterial infection, endotoxin/proinflammatory cytokine secretion, and ROS burst, fully cutting off the path of proinflammatory cascades to reverse the progression of bacterial sepsis. In vivo experiments demonstrate that MCeC@MΦ considerably attenuate systemic hyperinflammation and rapidly rescue organ damage within 1 day to confer higher survival rates (>75%) to mice with progressive MDR Escherichia coli bacteremia. The proposed decoy nanozyme-enabled multitarget collaborative intervention strategy offers a powerful modality for bacterial sepsis management and opens up possibilities for the treatment of cytokine storm in the COVID-19 pandemic and immune-mediated inflammation diseases.

5.
Cell Discov ; 8(1): 87, 2022 Sep 08.
Article in English | MEDLINE | ID: covidwho-2008266

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs), especially the latest Omicron, have exhibited severe antibody evasion. Broadly neutralizing antibodies with high potency against Omicron are urgently needed for understanding the working mechanisms and developing therapeutic agents. In this study, we characterized the previously reported F61, which was isolated from convalescent patients infected with prototype SARS-CoV-2, as a broadly neutralizing antibody against all VOCs including Omicron BA.1, BA.1.1, BA.2, BA.3 and BA.4 sublineages by utilizing antigen binding and cell infection assays. We also identified and characterized another broadly neutralizing antibody D2 with epitope distinct from that of F61. More importantly, we showed that a combination of F61 with D2 exhibited synergy in neutralization and protecting mice from SARS-CoV-2 Delta and Omicron BA.1 variants. Cryo-Electron Microscopy (Cryo-EM) structures of the spike-F61 and spike-D2 binary complexes revealed the distinct epitopes of F61 and D2 at atomic level and the structural basis for neutralization. Cryo-EM structure of the Omicron-spike-F61-D2 ternary complex provides further structural insights into the synergy between F61 and D2. These results collectively indicated F61 and F61-D2 cocktail as promising therapeutic antibodies for combating SARS-CoV-2 variants including diverse Omicron sublineages.

6.
BMC Med ; 20(1): 314, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-2002177

ABSTRACT

BACKGROUND: Whether a genetic predisposition to psychiatric disorders is associated with coronavirus disease 2019 (COVID-19) is unknown. METHODS: Our analytic sample consisted of 287,123 white British participants in UK Biobank who were alive on 31 January 2020. We performed a genome-wide association study (GWAS) analysis for each psychiatric disorder (substance misuse, depression, anxiety, psychotic disorder, and stress-related disorders) in a randomly selected half of the study population ("base dataset"). For the other half ("target dataset"), the polygenic risk score (PRS) was calculated as a proxy of individuals' genetic predisposition to a given psychiatric phenotype using discovered genetic variants from the base dataset. Ascertainment of COVID-19 was based on the Public Health England dataset, inpatient hospital data, or death registers in UK Biobank. COVID-19 cases from hospitalization records or death records were considered "severe cases." The association between the PRS for psychiatric disorders and COVID-19 risk was examined using logistic regression. We also repeated PRS analyses based on publicly available GWAS summary statistics. RESULTS: A total of 143,562 participants (including 10,868 COVID-19 cases) were used for PRS analyses. A higher genetic predisposition to psychiatric disorders was associated with an increased risk of any COVID-19 and severe COVID-19. The adjusted odds ratio (OR) for any COVID-19 was 1.07 (95% confidence interval [CI] 1.02-1.13) and 1.06 (95% CI 1.01-1.11) among individuals with a high genetic risk (above the upper tertile of the PRS) for substance misuse and depression, respectively, compared with individuals with a low genetic risk (below the lower tertile). Slightly higher ORs were noted for severe COVID-19, and similar result patterns were obtained in analyses based on publicly available GWAS summary statistics. CONCLUSIONS: Our findings suggest a potential role of genetic factors in the observed phenotypic association between psychiatric disorders and COVID-19. Our data underscore the need for increased medical surveillance for this vulnerable population during the COVID-19 pandemic.


Subject(s)
COVID-19 , Mental Disorders , Substance-Related Disorders , COVID-19/epidemiology , COVID-19/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mental Disorders/epidemiology , Mental Disorders/genetics , Multifactorial Inheritance , Pandemics , Risk Factors , Substance-Related Disorders/epidemiology
7.
Virol Sin ; 37(2): 238-247, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1692813

ABSTRACT

Multiple new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have constantly emerged, as the delta and omicron variants, which have developed resistance to currently gained neutralizing antibodies. This highlights a critical need to discover new therapeutic agents to overcome the variants mutations. Despite the availability of vaccines against coronavirus disease 2019 (COVID-19), the use of broadly neutralizing antibodies has been considered as an alternative way for the prevention or treatment of SARS-CoV-2 variants infection. Here, we show that the nasal delivery of two previously characterized broadly neutralizing antibodies (F61 and H121) protected K18-hACE2 mice against lethal challenge with SARS-CoV-2 variants. The broadly protective efficacy of the F61 or F61/F121 cocktail antibodies was evaluated by lethal challenge with the wild strain (WIV04) and multiple variants, including beta (B.1.351), delta (B.1.617.2), and omicron (B.1.1.529) at 200 or 1000 TCID50, and the minimum antibody administration doses (5-1.25 â€‹mg/kg body weight) were also evaluated with delta and omicron challenge. Fully prophylactic protections were found in all challenged groups with both F61 and F61/H121 combination at the administration dose of 20 â€‹mg/kg body weight, and corresponding mice lung viral RNA showed negative, with almost all alveolar septa and cavities remaining normal. Furthermore, low-dose antibody treatment induced significant prophylactic protection against lethal challenge with delta and omicron variants, whereas the F61/H121 combination showed excellent results against omicron infection. Our findings indicated the potential use of broadly neutralizing monoclonal antibodies as prophylactic and therapeutic agent for protection of current emerged SARS-CoV-2 variants infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Neutralizing , Antibodies, Viral , Body Weight , Broadly Neutralizing Antibodies , COVID-19/prevention & control , Humans , Mice , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
8.
Phys Chem Chem Phys ; 24(7): 4324-4333, 2022 Feb 16.
Article in English | MEDLINE | ID: covidwho-1671657

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 has been declared a global health crisis. The development of anti-SARS-CoV-2 drugs heavily depends on the systematic study of the critical biological processes of key proteins of coronavirus among which the main proteinase (Mpro) dimerization is a key step for virus maturation. Because inhibiting the Mpro dimerization can efficiently suppress virus maturation, the key residues that mediate dimerization can be treated as targets of drug and antibody developments. In this work, the structure and energy features of the Mpro dimer of SARS-CoV-2 and SARS-CoV were studied using molecular dynamics (MD) simulations. The free energy calculations using the Generalized Born (GB) model showed that the dimerization free energy of the SARS-CoV-2 Mpro dimer (-107.5 ± 10.89 kcal mol-1) is larger than that of the SARS-CoV Mpro dimer (-92.83 ± 9.81 kcal mol-1), indicating a more stable and possibly a quicker formation of the Mpro dimer of SARS-CoV-2. In addition, the energy decomposition of each residue revealed 11 key attractive residues. Furthermore, Thr285Ala weakens the steric hindrance between the two protomers of SARS-CoV-2 that can form more intimate interactions. It is interesting to find 11 repulsive residues which effectively inhibit the dimerization process. At the interface of the Mpro dimer, we detected three regions that are rich in interfacial water which stabilize the SARS-CoV-2 Mpro dimer by forming hydrogen bonds with two protomers. The key residues and rich water regions provide important targets for the future design of anti-SARS-CoV-2 drugs through inhibiting Mpro dimerization.


Subject(s)
Coronavirus 3C Proteases/chemistry , SARS-CoV-2/enzymology , COVID-19 , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Pandemics , Protein Multimerization
9.
BMC Neurol ; 22(1): 15, 2022 Jan 07.
Article in English | MEDLINE | ID: covidwho-1613227

ABSTRACT

BACKGROUND: An increased susceptibility to COVID-19 has been suggested for individuals with neurodegenerative diseases, but data are scarce from longitudinal studies. METHODS: In this community-based cohort study, we included 96,275 participants of the UK Biobank who had available SARS-CoV-2 test results in Public Health England. Of these, 2617 had a clinical diagnosis of neurodegenerative diseases in the UK Biobank inpatient hospital data before the outbreak of COVID-19 (defined as January 31st, 2020), while the remaining participants constituted the reference group. We then followed both groups from January 31st, 2020 to June 14th, 2021 for ascertainment of COVID-19 outcomes, including any COVID-19, inpatient care for COVID-19, and COVID-19 related death. Logistic regression was applied to estimate the association between neurogenerative disease and risks of COVID-19 outcomes, adjusted for multiple confounders and somatic comorbidities. RESULTS: We observed an elevated risk of COVID-19 outcomes among individuals with a neurodegenerative disease compared with the reference group, corresponding to a fully adjusted odds ratio of 2.47 (95%CI 2.25-2.71) for any COVID-19, 2.18 (95%CI 1.94-2.45) for inpatient COVID-19, and 3.67 (95%CI 3.11-4.34) for COVID-19 related death. Among individuals with a positive test result for SARS-CoV-2, individuals with neurodegenerative diseases had also a higher risk of COVID-19 related death than others (fully adjusted odds ratio 2.08; 95%CI 1.71-2.53). CONCLUSION: Among UK Biobank participants who received at least one test for SARS-CoV-2, a pre-existing diagnosis of neurodegenerative disease was associated with a subsequently increased risk of COVID-19, especially COVID-19 related death.


Subject(s)
COVID-19 , Neurodegenerative Diseases , Biological Specimen Banks , Cohort Studies , England , Humans , Neurodegenerative Diseases/epidemiology , Risk Factors , SARS-CoV-2
10.
BMC Med ; 19(1): 301, 2021 11 16.
Article in English | MEDLINE | ID: covidwho-1518277

ABSTRACT

BACKGROUND: With the increasing number of people infected with and recovered from coronavirus disease 2019 (COVID-19), the extent of major health consequences of COVID-19 is unclear, including risks of severe secondary infections. METHODS: Based on 445,845 UK Biobank participants registered in England, we conducted a matched cohort study where 5151 individuals with a positive test result or hospitalized with a diagnosis of COVID-19 were included in the exposed group. We then randomly selected up to 10 matched individuals without COVID-19 diagnosis for each exposed individual (n = 51,402). The life-threatening secondary infections were defined as diagnoses of severe secondary infections with high mortality rates (i.e., sepsis, endocarditis, and central nervous system infections) from the UK Biobank inpatient hospital data, or deaths from these infections from mortality data. The follow-up period was limited to 3 months after the initial COVID-19 diagnosis. Using a similar study design, we additionally constructed a matched cohort where exposed individuals were diagnosed with seasonal influenza from either inpatient hospital or primary care data between 2010 and 2019 (6169 exposed and 61,555 unexposed individuals). After controlling for multiple confounders, Cox models were used to estimate hazard ratios (HRs) of life-threatening secondary infections after COVID-19 or seasonal influenza. RESULTS: In the matched cohort for COVID-19, 50.22% of participants were male, and the median age at the index date was 66 years. During a median follow-up of 12.71 weeks, the incidence rate of life-threatening secondary infections was 2.23 (123/55.15) and 0.25 (151/600.55) per 1000 person-weeks for all patients with COVID-19 and their matched individuals, respectively, which corresponded to a fully adjusted HR of 8.19 (95% confidence interval [CI] 6.33-10.59). The corresponding HR of life-threatening secondary infections among all patients with seasonal influenza diagnosis was 4.50, 95% CI 3.34-6.08 (p for difference < 0.01). Also, elevated HRs were observed among hospitalized individuals for life-threatening secondary infections following hospital discharge, both in the COVID-19 (HR = 6.28 [95% CI 4.05-9.75]) and seasonal influenza (6.01 [95% CI 3.53-10.26], p for difference = 0.902) cohorts. CONCLUSION: COVID-19 patients have increased subsequent risks of life-threatening secondary infections, to an equal extent or beyond risk elevations observed for patients with seasonal influenza.


Subject(s)
COVID-19 , Coinfection , Biological Specimen Banks , COVID-19 Testing , Cohort Studies , Humans , Male , SARS-CoV-2 , United Kingdom/epidemiology
11.
Viruses ; 13(8)2021 07 30.
Article in English | MEDLINE | ID: covidwho-1335234

ABSTRACT

The development of rapid serological detection methods re urgently needed for determination of neutralizing antibodies in sera. In this study, four rapid methods (ACE2-RBD inhibition assay, S1-IgG detection, RBD-IgG detection, and N-IgG detection) were established and evaluated based on chemiluminescence technology. For the first time, a broadly neutralizing antibody with high affinity was used as a standard for the quantitative detection of SARS-CoV-2 specific neutralizing antibodies in human sera. Sera from COVID-19 convalescent patients (N = 119), vaccinated donors (N = 86), and healthy donors (N = 299) confirmed by microneutralization test (MNT) were used to evaluate the above methods. The result showed that the ACE2-RBD inhibition assay calculated with either ACE2-RBD binding inhibition percentage rate or ACE2-RBD inhibiting antibody concentration were strongly correlated with MNT (r ≥ 0.78, p < 0.0001) and also highly consistent with MNT (Kappa Value ≥ 0.94, p < 0.01). There was also a strong correlation between the two evaluation indices (r ≥ 0.99, p < 0.0001). Meanwhile, S1-IgG and RBD-IgG quantitative detection were also significantly correlated with MNT (r ≥ 0.73, p < 0.0001), and both methods were highly correlated with each other (r ≥ 0.95, p < 0.0001). However, the concentration of N-IgG antibodies showed a lower correlation with the MNT results (r < 0.49, p < 0.0001). The diagnostic assays presented here could be used for the evaluation of SARS-CoV-2 vaccine immunization effect and serological diagnosis of COVID-19 patients, and could also have guiding significance for establishing other rapid serological methods to surrogate neutralization tests for SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19 Vaccines/immunology , COVID-19/virology , Immunoassay/methods , Luminescent Measurements/methods , SARS-CoV-2/immunology , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Serological Testing/instrumentation , COVID-19 Vaccines/administration & dosage , Humans , SARS-CoV-2/genetics , Vaccination
12.
Virol Sin ; 36(5): 934-947, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1293454

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has precipitated multiple variants resistant to therapeutic antibodies. In this study, 12 high-affinity antibodies were generated from convalescent donors in early outbreaks using immune antibody phage display libraries. Of them, two RBD-binding antibodies (F61 and H121) showed high-affinity neutralization against SARS-CoV-2, whereas three S2-target antibodies failed to neutralize SARS-CoV-2. Following structure analysis, F61 identified a linear epitope located in residues G446-S494, which overlapped with angiotensin-converting enzyme 2 (ACE2) binding sites, while H121 recognized a conformational epitope located on the side face of RBD, outside from ACE2 binding domain. Hence the cocktail of the two antibodies achieved better performance of neutralization to SARS-CoV-2. Importantly, these two antibodies also showed efficient neutralizing activities to the variants including B.1.1.7 and B.1.351, and reacted with mutations of N501Y, E484K, and L452R, indicated that it may also neutralize the recent India endemic strain B.1.617. The unchanged binding activity of F61 and H121 to RBD with multiple mutations revealed a broad neutralizing activity against variants, which mitigated the risk of viral escape. Our findings revealed the therapeutic basis of cocktail antibodies against constantly emerging SARS-CoV-2 variants and provided promising candidate antibodies to clinical treatment of COVID-19 patients infected with broad SARS-CoV-2 variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Neutralizing , Humans , Spike Glycoprotein, Coronavirus
13.
Lancet Healthy Longev ; 1(2): e69-e79, 2020 11.
Article in English | MEDLINE | ID: covidwho-1284647

ABSTRACT

BACKGROUND: Psychiatric morbidities have been associated with a risk of severe infections through compromised immunity, health behaviours, or both. However, data are scarce on the association between multiple types of pre-pandemic psychiatric disorders and COVID-19. We aimed to assess the association between pre-pandemic psychiatric disorders and the subsequent risk of COVID-19 using UK Biobank. METHODS: For this cohort analysis, we included participants from UK Biobank who were registered in England and excluded individuals who died before Jan 31, 2020, (the start of the COVID-19 outbreak in the UK) or had withdrawn from UK Biobank. Participants diagnosed with a psychiatric disorder before Jan 31 were included in the group of individuals with pre-pandemic psychiatric disorders, whereas participants without a diagnosis before the outbreak were included in the group of individuals without pre-pandemic psychiatric disorders. We used the Public Health England dataset, UK Biobank hospital data, and death registers to collect data on COVID-19 cases. To examine the relationship between pre-pandemic psychiatric disorders and susceptibility to COVID-19, we used logistic regression models to estimate odds ratios (ORs), controlling for multiple confounders and somatic comorbidities. Key outcomes were all COVID-19, COVID-19 specifically diagnosed in inpatient care, and COVID-19-related deaths. ORs were also estimated separately for each psychiatric disorder and on the basis of the number of pre-pandemic psychiatric disorders. As a positive disease control, we repeated analyses for hospitalisation for other infections. FINDINGS: We included 421 014 UK Biobank participants in our study and assessed their COVID-19 status between Jan 31 and July 26, 2020. 50 809 participants were diagnosed with psychiatric disorders before the outbreak, while 370 205 participants had no psychiatric disorders. The mean age at outbreak was 67·80 years (SD 8·12). We observed an elevated risk of COVID-19 among individuals with pre-pandemic psychiatric disorders compared with that of individuals without such conditions. The fully adjusted ORs were 1·44 (95% CI 1·28-1·62) for All COVID-19 cases, 1·55 (1·34-1·78) for Inpatient COVID-19 cases, and 2·03 (1·59-2·59) for COVID-19-related deaths. We observed excess risk, defined as risk that increased with the number of pre-pandemic psychiatric disorders, across all diagnostic categories of pre-pandemic psychiatric disorders. We also observed an association between psychiatric disorders and elevated risk of hospitalisation due to other infections (OR 1·74, 95% CI 1·58-1·93). INTERPRETATION: Our findings suggest that pre-existing psychiatric disorders are associated with an increased risk of COVID-19. These findings underscore the need for surveillance of and care for populations with pre-existing psychiatric disorders during the COVID-19 pandemic. FUNDING: National Natural Science Foundation of China.


Subject(s)
COVID-19 , Pandemics , Biological Specimen Banks , Cohort Studies , England , Humans
14.
BMJ Open ; 11(6): e046931, 2021 06 04.
Article in English | MEDLINE | ID: covidwho-1259010

ABSTRACT

OBJECTIVE: To assess the impact of the COVID-19 outbreak on cardiovascular disease (CVD) related mortality and hospitalisation. DESIGN: Community-based prospective cohort study. SETTING: The UK Biobank. PARTICIPANTS: 421 372 UK Biobank participants who were registered in England and alive as of 1 January 2020. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome of interest was CVD-related death, which was defined as death with CVD as a cause in the death register. We retrieved information on hospitalisations with CVD as the primary diagnosis from the UK Biobank hospital inpatient data. The study period was 1 January 2020 to June 30 2020, and we used the same calendar period of the three preceding years as the reference period. In order to control for seasonal variations and ageing of the study population, standardised mortality/incidence ratios (SMRs/SIRs) with 95% CIs were used to estimate the relative risk of CVD outcomes during the study period, compared with the reference period. RESULTS: We observed a distinct increase in CVD-related deaths in March and April 2020, compared with the corresponding months of the three preceding years. The observed number of CVD-related deaths (n=218) was almost double in April, compared with the expected number (n=120) (SMR=1.82, 95% CI 1.58 to 2.07). In addition, we observed a significant decline in CVD-related hospitalisations from March onwards, with the lowest SIR observed in April (0.45, 95% CI 0.41 to 0.49). CONCLUSIONS: There was a distinct increase in the number of CVD-related deaths in the UK Biobank population at the beginning of the COVID-19 outbreak. The shortage of medical resources for hospital care and stress reactions to the pandemic might have partially contributed to the excess CVD-related mortality, underscoring the need of sufficient healthcare resources and improved instructions to the public about seeking healthcare in a timely way.


Subject(s)
COVID-19 , Biological Specimen Banks , Disease Outbreaks , England/epidemiology , Humans , Prospective Studies , Risk Factors , SARS-CoV-2 , United Kingdom/epidemiology
15.
Nanoscale ; 13(20): 9364-9370, 2021 May 27.
Article in English | MEDLINE | ID: covidwho-1230905

ABSTRACT

The widespread coronavirus disease 2019 (COVID-19) has been declared a global health emergency. As one of the most important targets for antibody and drug developments, the Spike RBD-ACE2 interface has received extensive attention. Here, using molecular dynamics simulations, we explicitly analyzed the energetic features of the RBD-ACE2 complex of both SARS-CoV and SARS-CoV-2. Despite the high structural similarity, the binding strength of SARS-CoV-2 to the ACE2 receptor is estimated to be -16.35 kcal mol-1 stronger than that of SARS-CoV. Energy decomposition analyses identified three binding patches in SARS-CoV-2 RBD and eleven key residues (F486, Y505, N501, Y489, Q493, L455, etc.), which are believed to be the main targets for drug development. The dominating forces arise from van der Waals attractions and dehydration of these residues. Compared with SARS-CoV, we found seven mutational sites (K417, L455, A475, G476, E484, Q498 and V503) on SARS-CoV-2 that unexpectedly weakened the RBD-ACE2 binding. Interestingly, the E484 site is recognized to be the most repulsive residue at the RBD-ACE2 interface, indicating that from the energy point of view, a mutation of E484 would be beneficial to RBD-ACE2 binding. This is in line with recent findings that it is mutated by lysine (E484K mutation) in the rapidly spreading variants of COVID-19 belonging to the B.1.351 and P.1 lineages. In addition, this mutation is reported to cause virus neutralization escapes from highly neutralizing COVID-19 convalescent plasma. Thus, further efforts are required to probe its functional relevance. Overall, our results present a systematic understanding of the energetic binding features of SARS-CoV-2 RBD with the ACE2 receptor, which can provide a valuable insight for the design of SARS-CoV-2 drugs and identification of cross-active antibodies.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Binding Sites , COVID-19/therapy , Humans , Immunization, Passive , Molecular Dynamics Simulation , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , COVID-19 Serotherapy
16.
Sci Rep ; 11(1): 6811, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1149746

ABSTRACT

High rate of cardiovascular disease (CVD) has been reported among patients with coronavirus disease 2019 (COVID-19). Importantly, CVD, as one of the comorbidities, could also increase the risks of the severity of COVID-19. Here we identified phospholipase A2 group VII (PLA2G7), a well-studied CVD biomarker, as a hub gene in COVID-19 though an integrated hypothesis-free genomic analysis on nasal swabs (n = 486) from patients with COVID-19. PLA2G7 was further found to be predominantly expressed by proinflammatory macrophages in lungs emerging with progression of COVID-19. In the validation stage, RNA level of PLA2G7 was identified in nasal swabs from both COVID-19 and pneumonia patients, other than health individuals. The positive rate of PLA2G7 were correlated with not only viral loads but also severity of pneumonia in non-COVID-19 patients. Serum protein levels of PLA2G7 were found to be elevated and beyond the normal limit in COVID-19 patients, especially among those re-positive patients. We identified and validated PLA2G7, a biomarker for CVD, was abnormally enhanced in COVID-19 at both nucleotide and protein aspects. These findings provided indications into the prevalence of cardiovascular involvements seen in patients with COVID-19. PLA2G7 could be a potential prognostic and therapeutic target in COVID-19.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , COVID-19/metabolism , Cardiovascular Diseases/metabolism , Macrophages/metabolism , 1-Alkyl-2-acetylglycerophosphocholine Esterase/blood , 1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Biomarkers/metabolism , COVID-19/epidemiology , COVID-19/immunology , COVID-19/pathology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/virology , China/epidemiology , Data Mining/methods , Humans , Macrophages/immunology , Macrophages/pathology , Polymorphism, Single Nucleotide , SARS-CoV-2/isolation & purification , Transcriptional Activation , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL